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An approximate method of solving an inverse nonlinear contact heat-transfer problem 
in a rectangular plate by local one-dimensional difference schemes is examined. 

Let us consider a two-dimensional contact problem of heat propagation in a rectangular 
plate {O~x~a,O~y~b}: Find a continuous function U(x, y, t) satisfying the equations 

the initial conditions 

U t = div [~, (U) grad U] + [1 (U), (x, g) C D,, 

Ut = div [~,2 (U) grad U] q- f2 (U), (x, g) C D2, 

u (x, v, o )=  q~(x, v), 

the boundary conditions of the first kind on F I + F~-~/"s-~- F~ + F~ 

Uir,-I G +G +r,+r~ = 

and matching conditions on the boundary F:y = ~(x) of the contact 

[U]v=~(*)=0, [%(U) 0-~ -U ] = 0 .  
On Jv=~(x) 

We assume that the temperature field on the contact line 

(see Fig. i) 

(1) 

(2) 

(3) 

(4) 

(5) 

Uly=~(~ = U* (x, ~ (x), z) (6) 

or on the line x = c 

UI.=~=U*(c ,  V, t), O < c < a  

is known from the experiment. It is required to determine the value of the temperature on the 
boundary F6 and the thermal field at inner points of the plate. 

We solve the problem (1)-(6) in two stages. We assume that condition (6) is satisfied 

on the boundary y = ~(x). We first solve the direct single-phase problem (i), (3) with 
boundary conditions of the first kind 

UIr~+r.+r~ - % 

in the domain D 2 + Faq--- /',2 + / ' a  + _F and we find 

Ub=~ = U* (x, ~(x), t) 

U(x, y, t) and Z2(U) 0U 
~n v=~+o in D2. We solve the 

inverse single-phase problem in the domain DI + fa-~fsq-F6+ F: Find the thermal field in D~ 

and the value of U(O, y, t) from the conditions (2), (3) , U]&+F5 ~ ~, UI~ = U*(x, ~(x), t) and 

(7) 
OU 

2~l(U)-~--n v=~-o = Z2(U)~Iv=~+o" 
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Locally one-dimensional difference schemes of the fractional step method (schemes of 

variable directions) are used to solve the formulated problems [I]. They are realized well 
not only on digital computers but also on R-networks [2]. 

Let us consider the network x = xi, y = yj (i = 0, i, ..., N; j = 0 .... ~ M). Let the 

lines x = xi~ y = yj intersect the boundary y = ~(x) only at network nodes and let NAx = b. 

Without limiting the generality, it can be considered that the spacing Ax is constant, ~(d) = 
n 

ioAx. Let At denote the time spacing and let U(xi, yj, t n) z Uij. We shall seek the solu- 

tion of the problem (1)-(6) in the interval 0~t~T. 

Let us introduce the different operators 

( e+~,- - G ' j )  - ,_~, j  ( v ~ j -  u i _ ~ , j ) ] ,  
Ax ~ 

n 2 L n--1 U i , / 4 - 1 -  Ui j  X n-1 U i ! . _  Ui , /_ l  l 
iz ] 

AvUii  -- Ay i_I  + Ay~ %ii Ay j  i , i -I  A y i _  I �9 

We construct a variable directions scheme. In the domain D2 we consider the problem 

/~'J; . . . . .  = . . . .  Vu ~;~ - / ~ V ~ j  + - -T-  ] 0, M; i io + ] + 1, N, 
At 

,(~+ • ~+ • 
)'I \ 27 2 

Vio+j,j  --- Clio+~,] , VNj : UNj : ~Uj. 

(8) 

From condition (8) we determine the values of Vij on all the horizontal layers including j = 

0 and j = M in the domain D2. Taken as boundary values are 

~, V~ w = U  X,v, g~, f , , +  , o + N  = x ~ _ j ,  / j ,  4,+ ~- / 

and we take the temperature values found in the preceding time layer as .. 
13 

Using the values found for V.. in D2, we determine V., in D~ from the conditions 
13 13 

~J " i = : i  . . . .  i o + j - - l ;  ] = 0  . . . .  M ,  Vy~ - -  U~j _ A~V~j ~- - - f - ,  , 
At  

U *(''+ ~) g~o+i,i : ', io-7i ,j , 

n U@ ~s ,,a Ir v'~ -- g~o+]-l,]) ()vs)z~ (Vio+i+l,i ]]iu 4-/--l.i k~i,+/./ , io+],/). 

(9) 

From (9) we find V~. in DI at all the network nodes including the nodes with i = 0, i.e., 
13 

V0j~ whereupon we have the values of the auxiliary function Vij in all the inner and boundary 

nodes of the network. They are obtained by using one-dimensional schemes constructed with 
the variation of U in the direction of the x axis taken into account. We now solve the direct 
heat-conduction problem in the domain DI+ D2 + Pl + P2 + fa-~f~ + f S ~  

Un+ 1 i~ V u  ~ " - -  t i J  . 

A* _ A , U ~  +~ + - - f - ,  i =  ! . . . . .  N - - 1 ;  / ---- 1 . . . . .  M - -  1, 

Un+l , ~a+1 U ~ ij pt~-p24-raj-r4+rn ~ ~, uio+/.] : io4_i./. 

(10) 

_n+1 
From (i0) we determine u.. at all network nodes in the vertical layers, including the value 
n+1 i] 

U0j which is the approximate solution of the initial inverse problem (1)-(6) for t = (n + i). 

s 
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Fig. I. 
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Structure of the 

inverse heat-transfer prob- 
lem domain. 

The difference scheme used is absolutely stable for the solution of direct problems 
[3]. For the solution of the inverse problem (9) in the domain Dt the system matrix turns 
out to be poorly specified, a cumulative error occurs, the result is distorted, i.e., the 
problem turns out to be incorrect. Smoothing of the input information, as well as smoothing 

of the results on each time layer, if necessary, are performed to suppress the instability. 

In our case the initial errors can occur because of inaccurate experimental determina- 

tion of U*, as well as in the determination of V. at the near-boundary (from the left) 
lo+j -z ,j 

nodes from the condition of equality of the fluxes in (9). Let us show how this smoothing 

can be performed for Vio+~_z,~,jj say. We construct the functional 

/1r 

,t, (a) = ~ (Tj - -  V~o+i-~,i) ~ + 
1=0 

M M 

~.... "W ( T j -  Ti_~)2 + ~ 
Ag2 i=a AY~ i=l ~'r (Ti+l 2Tj + Ti_i) 2. 

We seek the minimum ~(~) in To, ..., T M. Differentiating with respect to Tj, we obtain a 

linear system of the form AT = F to determine T = {To, ..., T M} as" a function of ~. To deter- 

mine the optimal value of the regularization parameter a, we construct the following iteration 

process. 

Let 6 be the error in approximating the difference scheme (5 = o(Ax + Ay ~ At)). 

consider the equation 

We determine ~ from (Ii). 
the form 

We 

M 

,/=0 

(ii) 

For convenience of the solution, we follow [4] and write (ii) in 

M 1 

i = o  " 5 

where p = i/~. 

The iteration process to determine ~ is constructed by the Newton method 

g (pk) 
P~+l = Ph ----, g' (p~) 

1 g ~ + A ~  - - g  ~ - - A ~  
g' (Pk) = p2 2Aoc 

(12) 

(13) 

The algorithm of the regularization process is the following: 

i) we select the zeroth approximation p = Po; 

2) we solve the system AT = F at p = Po. We find T ~ and g(i/~o). 
3 

AT = F at p = i/(ao + As) and find g . We find 
ao + Ao~ o~ o - -  Ao~ 

We solve the system 

analogously; 
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TABLE i. Values of the Boundary Function U(x, O~ t) 

g:O,O y=O,2 , $/=0,4 y=0,6 y=0,8 y=1,0 

5,4697 5,4397 5,3986 5,3613 5,3264 5,2900 
5,4310 5,4100 5,3830 5,3740 5,3440 5,3160 
5,4691 5,4367 5,3927 5,3600 5,3172 5,2873 
5,4772 5,4406 5,4037 5,3606 5,3282 5,2915 

/:Z0 

7,0699 
7,0450 
7,0689 
7,071t 

f,o4o4 
7,0200 
7,0392 
7,0427 

6,9814 
6,9870 
6,9823 
7,0143 

6,9715 
6,9710 
6,9584 
6,9857 

6,9516 " 
6,9360 
6,9477 
6,9570 

6,9004 
6,9070 
6,8964 
6,9282 

3) we find g'(p0) from (13); 

4) we calculate Pl from (12); 

5) s u b s t i t u t i n g  P l  i n t o  AT = F ,  we f i n d  t h e  f i r s t  a p p r o x i m a t i o n  T. ~ and r e p e a t  1 ) - 5 ) .  ] 
Having determined T., we set Vio+j_1 = T. and continue to solve the inverse problem 

3 ,J 3 
in the domain D I. 

We illustrate the method elucidated by t h e  p r o b l e m  ( 1 ) - ( 6 )  i n  w h i c h  

~ I ( U ) = U  2, ~ ( U ) = 4 U 2  ' f l ( U ) ~ O ,  / ~ ( U ) - -  3 , ~ ( x ) = 2 x ,  
9 4U 

I 

(10 - -  2x - -  2y) -V, b' > 2x, 
q) (x, y) = i 

( I 0 -  3 x - - 1 . 5 9 )  7 , y%2x, 

/ l 
I (10--3x+4t)Y; y=0; 0~x~0.5, 

I 

Ur~+r,+r,+r~+r, = i ( 8 , 5 - -  !5g-~- • x = 0,5; 0 - ~ q ~  1, 

(8--2x+4t) 2; g = l ;  0 ~ x ~ 0 . 5  ( 

with the additional condition 
1 

Uly=2x = U* = ( 10 - -  6x + 4t) -y. 

Presented in Table 1 are results of computations on an M-222 digital computer, on an 
R-network, and values of the exact solution (first, second, and fourth rows, respectively) 
for Ax = 0.i; Ay = 0.2; At = 0.I. No instability in the inverse problem is observed for 
these spacings. Presented in the third row are values of the regularized solution for Ax = 
0.05; &y = 0.I; At = 0.01 for which an instability in the solution of the inverse problem has 
already been observed explicitly. 
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